A Hybrid Differential Evolution and Back-Propagation Algorithm for Feedforward Neural Network Training
نویسندگان
چکیده
In this study a hybrid differential evolution-back-propagation algorithm to optimize the weights of feedforward neural network is proposed.The hybrid algorithm can achieve faster convergence speed with higher accuracy. The proposed hybrid algorithm combining differential evolution (DE) and back-propagation (BP) algorithm is referred to as DE-BP algorithm to train the weights of the feed-forward neural (FNN) network by exploiting global searching feature of the DE evolutionary algorithm and strong local searching ability of the BP algorithm. The DE has faster exploration property during initial stage of global search for the expense of convergence speed. On the contrary, the problem of random initialization of weights may lead to getting stuck at local minima of the gradient based BP algorithm. In the proposed hybrid algorithm, initially we use global searching ability of the DE to move towards global optimal solution in the search space for few generations by selecting good starting weights and then precise local gradient searching of the BP in that region to converge to the optimal solution with increased speed of convergence. The performance of proposed DE-BP is investigated on a couple of public domain datasets, the experimental results are compared with the BP algorithm, the DE evolutionary training algorithm and a hybrid real-coded GA with back-propagation (GA-BP) algorithm . The results show that the proposed hybrid DE-BP algorithm produce promising results in comparison with other training algorithms.
منابع مشابه
Estimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملPredicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کامل